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Asymmetric allylation of a-acetamido f-keto phosphonates was promoted, in the presence of potassium tert-butoxide as a base, by a palladium
catalyst prepared from [Pd(zz-allyl)(cod)]BF, and (R)-BINAP and gave the corresponding a-alkyl a-amino phosphonic acid derivatives with
65—88% ee. Diastereoselective reduction of the carbonyl group in the product was accomplished by NaBH, or Bus;NBH,. The diastereoselection
in the reduction was reversed by choice of solvent.

Optically activea-amino phosphonic acids have received or catalyti¢ asymmetric reactioh,only one example of
much attention due to their potential biological actiVvias stereoselective synthesis @f-amino phosphonic acids,
well as being haptens of catalytic antibodieBhe efficient bearing a quaternary chirakcarbon atom, has been, to the
synthesis of optically active.-amino phosphonic acids is  best of our knowledge, reportéd.

one of the important topics in organic synthetic chemistry.
Although various chirad-amino phosphonic acids have been
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A chiral carbon center is considerably difficult to construct
on prochiral nucleophiles with palladium-catalyzed asym-
metric allylation®® however, a few catalyst systems have
been devised for highly enantioselective allylatii?
Recently, we reported an asymmetric allylation of prochiral
nucleophilesp-acetamidg-keto esters, introducing a chiral
carbon center to the substrate in high enantioselectiity.
Herein, we describe an asymmetric allylatiorosécetamido
B-keto phosphonate&‘c catalyzed by an optically active
BINAP*>—palladium complex, which provided chiral-
allylateda-aminof-keto phosphonateswith up to 88% ee

The bulkier isopropyl group brought about a higher degree
of enantioface selection of the enolatelgf89% ee), but in
lower yield (34% vyield for 48 h).

Other a-acetamidgs-keto phosphonatesb and 1c also
reacted with2a, giving3b and3c with high stereoselectivi-
ties, respectively (entries 2 and 3). On the other hand, the
reactions ofLawith allyl acetate®b and2c proceeded with
79% and 65% ee, respectively (entries 4 and 5). The
y-substituent Rof 2 seemed to influence enantioselectivity
more than R

Next, trimethyl 1-N-acetylamino)phosphonoacetat,{¢

(Scheme 1). The reaction is the first catalytic enantioselective in which a phosphonyl group replaced the ketone moiety of
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synthesis ofr-amino phosphonates with a quaternary chiral
carbon center.

The asymmetric allylation of with 2 was carried out in
toluene at—30 °C with potassiumntert-butoxide and 1 mol
% of the chiral catalyst prepared in situ by mixinB){
BINAP and [Pd(z-allyl)(cod)]BE.*® The results are sum-
marized in Table 1. The BINAPpalladium catalyst was

Table 1. Catalytic Asymmetric Allylation ofo-Acetamido
B-Keto Phosphonatel&

entry R!(1) R2(2) time(h) product vyield® (%) eec (%)
1 Me (1a) Ph (2a) 20 3a 87 87
2 Et(lb) Ph(2a) 48 3b 72 78
3 Ph (1c) Ph(2a) 48 3c 78 88
4 Me(la) Pr(2b) 48 3d 27 79
5 Me(la) H (2c) 48 3e 80 65

a All reactions were carried out in toluene (0.2 M)-a80 °C. The ratio
of 1/2/BuOK/[Pdr-allyl)(cod)]BF4#/(R)-BINAP was 110:100:120:1:1.1.
blsolated yield based o#. ¢ Determined by HPLC analysis with a chiral
stationary phase column.

effective for the asymmetric allylation dfa with cinnamyl
acetate Za), giving (S-3awith 87% ee in 87% isolated yield
on the basis oRa (entry 1)1 The allylation ofla, which
was less reactive than the correspondirgcetamidgs-keto

o-acetamidof-keto ester, was subjected to the present
asymmetric allylation with2a (Scheme 2). The reaction
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proceeded slowly with lower enantioselectivity as compared
with those ofl. In comparison with the asymmetric allylation
of a-acetamidg@-keto esters reported previously, the ketone
moiety may play a more important role in the stereocontrol
than the alkoxycarbonyl group.
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K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa,
T.; Noyori, R.J. Org. Chem1986,51, 629.

(13) General Procedure for the Asymmetric Allylation of o-Acet-
amido 3-Keto PhosphonatesA mixture of [Pd¢-allyl)(cod)]BF, (1.7 mg,

5.0 umol) and (R)-BINAP (3.3 mg, 5.&mol) in toluene (0.5 mL) was
stirred for 10 min at room temperature. Allyl esgf0.50 mmol) was added

to the solution. After 10 min, the solution was added to a suspension of
o-acetamidgs-keto phosphonaté (0.55 mmol) andBuOK (67.3 mg, 0.60
mmol) in toluene (2.0 mL) at-30 °C. The reaction mixture was stirred for

20 h. The reaction was quenched by 1 N HCl aqueous (3.0 mL). The mixture

ester!! was carried out by use of an excess amount (]__1 was extracted three times with EtOAc. The organic layer was washed with

equiv) of laover2al® The O-substituents on the phosphonyl

brine, dried with NaSQ,, and evaporated under reduced pressure. The
residue was purified by preparative TLC (EtOAc/MeGH10/1), giving

group affected both the reactivity and the stereoselectivity. 3.
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Optically active3acan be readily converted to analkyl
pB-hydroxy a-amino phosphonic acid derivative(Scheme
3). Diastereoselective reduction &{3awas accomplished

Scheme 3
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in MeOH, at-30 °C syn/anti= 74/26
syn/anti =82/18 (BuyNBH,)

in 'BUOH, at 50 °C syn/anti = 15/85

by NaBH, in MeOH to give 6 a 74:26syn/antiratio of
isomers in 74% vyield” The syn-selectivity was improved
to 82:18 (89% yield) by the use of BNBH,4, which does
not contain any metal cation. The improvement of the
selectivity suggests that the reduction of the ketone in MeOH
may proceed through a nonchelation transition staféhe

BINAP—palladium catalyst, giving.-amino phosphonic acid
derivatives3 bearing a quaternary chiral carbon center at
the a-position. We also succeeded in diastereoselective
reduction of3, providing either diastereomer of tifichy-
droxy a-amino phosphonateshby the appropriate choice of
solvent.
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(17) General Procedure for the Chemoselective Reduction of 3.0 a
solution of3 (0.25 mmol) in MeOH ofBuOH (2.5 mL) was added NaBH
or BuuNBH, (0.35 mmol) at the reaction temperature. Afgedisappeared
completely, saturated Ni€l aqueous (1.0 mL) was added to the mixture,
and stirred for 5 min. The mixture was passed through a short column of
Na;SOs (EtOAC), and the eluent was evaporated under reduced pressure.
The residue was purified by medium-pressure liquid chromatography after

stereoselectivity was significantly dependent upon reaction Passing through a short column of silica gel, giviig

solvent. The use 0BuOH as a reaction solvent led to a
reverse in the diastereoselectivity, giving preferentiati-
(2S,3R)-6(anti/syn= 85:15) in 78% yield?

In conclusion, asymmetric allylation ofacetamidgs-keto
phosphonated proceeded in good enantioselectivity by
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also effective for the asymmetric reaction to give 86% e8afHowever,
the reaction rate was somewhat slow.
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(78% yield for 48 h), and the enantiomeric excess of the product was 84%.
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cyclic carbamates. The absolute configurations efas determined byH
NMR analysis of theD-methylmandelate derivative sfn-6according to
Trost's procedure (see ref 20). Further details are described in the Supporting
Information.
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